
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source
Models in Code Intelligence

Qihao Zhu*, Daya Guo*, Zhihong Shao*, Dejian Yang*, Peiyi Wang, Runxin Xu, Y. Wu
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai Dai

Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao

Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao
Chong Ruan, Fuli Luo, Wenfeng Liang

DeepSeek-AI

https://github.com/deepseek-ai/DeepSeek-Coder-V2

Abstract

We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language
model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically,
DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2
with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2
substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2,
while maintaining comparable performance in general language tasks. Compared to DeepSeek-
Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of
code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-
V2 expands its support for programming languages from 86 to 338, while extending the context
length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves
superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus,
and Gemini 1.5 Pro in coding and math benchmarks.

HumanEval MBPP+ MATH GSM8K
50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

90.2

76.2 75.7

94.9

88.2

72.2
73.4

93.7

83.5

74.6

67.7

90.8

84.9

72.0

60.1

95.0

81.7

69.0

50.4

93.0

81.1

68.2

Aider LiveCodeBench SWE-Bench
0

10

20

30

40

50

60

70

80

73.7

43.4

12.7

63.9

45.7

18.3

57.1

34.1

18.7

68.4

34.6

11.7

49.2

28.7

51.1

31.0

2.7

DeepSeek-Coder-V2 GPT-4-Turbo-0409 Gemini-1.5-Pro Claude-3-Opus Llama-3-70B Codestral

Figure 1 | The Performance of DeepSeek-Coder-V2 on math and code benchmarks.

*Core contributors

https://github.com/deepseek-ai/DeepSeek-Coder-V2

1. Introduction

The open-source community has made significant strides in advancing code intelligence through
the development of open-source code models such as StarCoder (Li et al., 2023b; Lozhkov
et al., 2024), CodeLlama (Roziere et al., 2023), DeepSeek-Coder (Guo et al., 2024), and Codestral
(MistralAI, 2024). These models have steadily approached the performance levels of closed-
source counterparts, contributing to the progress of code intelligence. However, there remains a
discernible gap when comparing them to state-of-the-art closed-source models like GPT4-Turbo
(OpenAI, 2023), Claude 3 Opus (Anthropic, 2024), and Gemini 1.5 Pro (Reid et al., 2024). To
bridge this gap and further propel the development of open-source code models, we introduce
the DeepSeek-Coder-V2 series. These models are built upon the foundation of DeepSeek-V2
(DeepSeek-AI, 2024) and are further pre-trained with an additional corpus with 6 trillion tokens.

In the pre-training phase, the dataset of DeepSeek-Coder-V2 is created with a composition
of 60% source code, 10% math corpus, and 30% natural language corpus. The source code
consists of 1,170B code-related tokens sourced from GitHub and CommonCrawl, using the same
pipeline as DeepSeekMath (Shao et al., 2024). This corpus expands from 86 to 338 programming
languages compared to the code corpus used to train DeepSeek-Coder. To demonstrate the
effectiveness of the new code corpus, we conduct ablation studies with the 1B parameter model
and observe improvements of 6.7% and 9.4% in accuracy across both HumanEval (from 30.5%
to 37.2%) and MBPP (from 44.6% to 54.0%) benchmarks (Austin et al., 2021a; Chen et al.,
2021), respectively. For the math corpus, we collect 221B math-related tokens sourced from
CommonCrawl using the same pipeline, which approximately doubles the size of the 120B
DeepSeekMath corpus (Shao et al., 2024), while for the natural language corpus, we directly
sample from the training corpus in DeepSeek-V2. In total, DeepSeek-Coder-V2 has been exposed
to 10.2T training tokens, where 4.2 trillion tokens originate from the DeepSeek V2 dataset, while
the remaining 6 trillion tokens come from the DeepSeek-Coder-V2 dataset.

To accommodate longer code inputs and enhance applicability across various programming
scenarios, we extend the context length from 16K to 128K tokens, allowing our models to
handle more complex and extensive coding tasks. After continuous pre-training DeepSeek-
V2 on this multi-source corpora, we find that DeepSeek-Coder-V2 significantly enhances the
model’s capabilities in coding and mathematical reasoning while maintaining comparable
general language performance.

In the alignment phase, we first construct an instruction training dataset that includes code
and math data from DeepSeek-Coder (Guo et al., 2024) and DeepSeek-Math (Shao et al., 2024), as
well as general instruction data from DeepSeek-V2 (DeepSeek-AI, 2024). This dataset is used to
fine-tune the base model. Then, in the reinforcement learning phase, we employ Group Relative
Policy Optimization (GRPO) algorithm to align its behavior with human preferences. Preference
data is collected in the coding domain using compiler feedback and test cases, and a reward
model is developed to guide the training of the policy model. This approach ensures that the
model’s responses are optimized for correctness and human preference in coding tasks. To
enable the model to support code completion after alignment, we also utilize Fill-In-Middle
approach (Guo et al., 2024) during the fine-tuning of the base model with 16B parameters.

1.1. Contributions

In summary, our main contributions are:

• We introduce DeepSeek-Coder-V2 with 16B and 236B parameters based on the DeepSeek-

2

MoE framework, which has activation parameters of only 2.4B and 21B, efficiently sup-
porting diverse computational and application needs. Additionally, DeepSeek-Coder-V2
supports 338 programming languages and a maximum context length of 128K tokens.

• We make the first attempt to develop an open-source hundred-billion-parameter code model
to advance the field of code intelligence. Experimental results indicate that DeepSeek-Coder-
V2 236B outperforms state-of-the-art closed-source models, such as GPT4-Turbo, Claude 3
Opus, and Gemini 1.5 Pro, in both coding and mathematics tasks.

• DeepSeek-Coder-V2 models are released publicly under a permissive license, allowing for
both research and unrestricted commercial use.

1.2. Summary of Evaluations and Metrics

• Code: Regarding code generation benchmark evaluation, DeepSeek-Coder-V2 demon-
strates remarkable superiority over all open source models while exhibiting performance
on par with the leading closed-source models, such as GPT4-Turbo, Claude 3 Opus, and
Gemini 1.5 Pro. Notably, we achieve a 90.2% score on HumanEval (Chen et al., 2021),
a 76.2% score on MBPP (Austin et al., 2021a) (establishing a new state-of-the-art result
with EvalPlus evaluation pipeline), and a 43.4% score on LiveCodeBench (Jain et al., 2024)
(questions from Dec. 2023 to June. 2024). Additionally, DeepSeek-Coder-V2 is the first
open-source model that surpasses a score of 10% on SWEBench Lite (Jimenez et al., 2023).

• Math: DeepSeek-Coder-V2 exhibits strong mathematical reasoning abilities, rivaling
top closed-source models such as GPT-4o, Gemini 1.5 Pro, and Claude 3 Opus on both
elementary benchmarks like GSM8K (Cobbe et al., 2021) and advanced competition-level
benchmarks including MATH (Hendrycks et al., 2021), AIME (MAA, 2024), and Math
Odyssey (Netmind.AI, 2024). Notably, DeepSeek-Coder-V2 attains an accuracy of 75.7%
on the MATH benchmark, nearly matching the state-of-the-art accuracy of 76.6% achieved
by GPT-4o. Furthermore, it surpasses the performance of these closed-source models in
the AIME 2024 competition.

• Natural Language: DeepSeek-Coder-V2 maintains comparable general language perfor-
mance to DeepSeek-V2. For example, DeepSeek-Coder-V2 achieves 79.2% on MMLU with
OpenAI simple-eval pipeline. Regarding subjective evaluation with GPT-4 as a judger,
DeepSeek-Coder-V2 achieves 65.0 on arena-hard (Li et al., 2024), 8.77 on MT-bench (Zheng
et al., 2023) and 7.84 on alignbench (Liu et al., 2023c). These scores are significantly better
than other code-specific models, even comparable with general open source models.

2. Data Collection

The pre-training data for DeepSeek-Coder-V2 primarily consists of 60% source code, 10% math
corpus, and 30% natural language corpus. Since the natural language corpus is directly sampled
from the training dataset of DeepSeek-V2, this section focuses on the collection, cleaning, and
filtering processes of the code and math data. Meanwhile, we further validate the quality of this
data through comparative analysis experiments.

We collect public repositories created before November 2023 on GitHub. We first apply the
same filtering rules and near-deduplication as those used in the DeepSeek-Coder (Guo et al.,
2024) to filter out lower-quality and duplicated source code. To make the paper self-contained,
we briefly describe the filtering rules. Firstly, we filter out files with an average line length
exceeding 100 characters or a maximum line length surpassing 1000 characters. Additionally,
we remove files with fewer than 25% alphabetic characters. Except for the XSLT programming
language, we further filter out files where the string "<?xml version=" appears in the first 100

3

characters. For HTML files, we consider the ratio of visible text to HTML code. We retain files
where the visible text constitutes at least 20% of the code and is no less than 100 characters. For
JSON and YAML files, which typically contain more data, we only keep files that have a character
count ranging from 50 to 5000 characters. This effectively removes most data-heavy files. By
applying these filtering rules and near-deduplication, we obtain 821B code encompassing 338
programming languages and 185B code-related text, such as markdown and issues. The list of
supported programming languages can be found in the Appendix A. We use the same tokenizer
as DeepSeekV2, detailed in (DeepSeek-AI, 2024).

To collect code-related and math-related web texts from Common Crawl, we follow the
same pipeline as DeepSeekMath (Shao et al., 2024). Specifically, we select coding forums such as
StackOverflow1, library sites such as PyTorch documentation2, and mathematics website such
as StackExchange3 as our initial seed corpus. Using this seed corpus, we train a fastText model
(Joulin et al., 2016) to recall more coding-related and math-related web pages. Since tokenization
for languages like Chinese cannot be done through spaces, we use the Byte Pair Encoding (BPE)
tokenizer from DeepSeek-V2, which significantly improves the recall accuracy of fastText. For
each domain, we calculate the percentage of web pages collected in the first iteration. Domains
with over 10% of web pages collected are classified as code-related or math-related. We then
annotate the URLs associated with code-related or math-related content within these identified
domains. Uncollected web pages linked to these URLs are added to the seed corpus. After three
iterations of data collection, we gather 70 billion code-related tokens and 221B math-related
tokens from web pages. To further collect high-quality source code from GitHub, we also
apply the same pipeline on GitHub with two iterations of data collection and collect 94B source
code. The initial seed corpus is constructed by manually collecting high-quality source code,
such as those containing detailed descriptions. Finally, the new code corpus consists of 1,170B
code-related tokens sourced from GitHub and CommonCrawl.

To demonstrate the effectiveness of the new code corpus, we conducted ablation studies (see
Table 1) using a 1B parameter model, comparing it with the corpus used to train DeepSeek-Coder.
Pre-training the 1B model on the new code corpus using 1T tokens resulted in improvements of
5.5% and 4.4% in accuracy on the HumanEval (from 30.5% to 36.0%) and MBPP (from 44.6% to
49.0%) benchmarks, respectively. Further training the 1B model with 2T tokens led to additional
improvements, with HumanEval and MBPP scores rising to 37.2% and 54.0%, respectively.
Therefore, the new code corpus is superior to the code corpus used to train DeepSeek-Coder.

Model Tokens Python C++ Java PHP TS C# Bash JS Avg MBPP

DeepSeek-Coder-1B 1T 30.5% 28.0% 31.7% 23.0% 30.8% 31.7% 9.5% 28.6% 26.7% 44.6%
DeepSeek-Coder-V2-1B 1T 36.0% 34.8% 31.7% 27.3% 37.7% 34.2% 6.3% 38.5% 31.2% 49.0%
DeepSeek-Coder-V2-1B 2T 37.2% 39.1% 32.3% 31.7% 34.6% 36.7% 12.0% 32.9% 32.0% 54.0%

Table 1 | Performance of 1B base model between DeepSeek-Coder and DeepSeek-Coder-V2.

3. Training Policy

3.1. Training Strategy

We use two training objectives for DeepSeek-Coder-v2 16B: Next-Token-Prediction and Fill-In-
Middle (FIM) (Bavarian et al., 2022; Guo et al., 2024; Li et al., 2023b). For DeepSeek-Coder-v2

1https://stackoverflow.com
2https://pytorch.org/docs
3https://math.stackexchange.com

4

236B, we only utilize the Next-Token-Prediction objective. Here we give a brief introduction of
the FIM training policy. We adopt the FIM training approach for the development of DeepSeek-
Coder-v2-16B, leveraging the PSM (Prefix, Suffix, Middle) mode. This method structures the
content reconstruction in the sequence: Prefix, Suffix, and Middle, as illustrated below:

<｜fim_begin｜> 𝑓𝑝𝑟𝑒<｜fim_hole｜> 𝑓𝑠𝑢 𝑓<｜fim_end｜> 𝑓𝑚𝑖𝑑𝑑𝑙𝑒<|eos_token|>

This structure is applied at the document level as part of the pre-packing process. The FIM is
utilized at a rate of 0.5, consistent with the PSM framework, to enhance the training efficacy and
model performance.

3.2. Model Architecture

Our architecture aligns with that of DeepSeekV2 (DeepSeek-AI, 2024). The hyperparameters
settings, 16B and 236B, correspond to those used in DeepSeek-V2-Lite and DeepSeek-V2, respec-
tively. Notably, we encountered instability during training and spikes in gradient values, which
we attributed to the exponential normalization technique. To address this, we reverted to the
conventional normalization method.

3.3. Training Hyper-Parameters

Consistent with the DeepSeek V2 methodology (DeepSeek-AI, 2024), we utilize the AdamW
optimizer (Loshchilov and Hutter, 2019), configured with 𝛽1 = 0.9, 𝛽2 = 0.95, and a weight decay
of 0.1. Batch sizes and learning rates are adjusted according to DeepSeek-V2 specifications. For
learning rate scheduling, we employ a cosine decay strategy, starting with 2000 warm-up steps
and gradually reducing the learning rate to 10% of its initial value.

Both DeepSeek-Coder-V2 and DeepSeek-Coder-V2-Lite are trained using the same method-
ology. To maintain robust natural language understanding capabilities in DeepSeek-Coder-V2,
we continue the pre-training process from an intermediate checkpoint of DeepSeek-V2. The
intermediate checkpoint was initially trained on 4.2T tokens. Consequently, DeepSeek-Coder-V2
has been exposed to a total of 10.2T high-quality tokens during the pre-training phase.

Model DeepSeek-Coder-V2-Lite DeepSeek-Coder-V2
Total Parameters (#TP) 16B 236B
Active Parameters (#AP) 2.4B 21B
Pre-training Tokens 4.2T+6T 4.2T+6T
LR Scheduler Cosine Cosine
FIM Enable Disable

Table 2 | Training Setting of DeepSeek-Coder-V2.

3.4. Long Context Extension

Following DeepSeek-V2, we extend the context length of DeepSeek-Coder-V2 to 128K using
Yarn (Peng et al., 2023). The hyper-parameters of YARN are the same as DeepSeek-V2: the scale
𝑠 to 40, 𝛼 to 1, 𝛽 to 32. We further continue training the model using two stages to enhance
its capability for handling long contexts. In the first stage, we utilize a sequence length of
32K and a batch size of 1152 for 1000 steps. In the second stage, we train the model for an
additional 1000 steps, employing a sequence length of 128K and a batch size of 288 sequences.

5

1K 13K 26K 39K 51K 64K 77K 89K 102K 115K 128K

Context Length (#Tokens)

0

10

20

30

40

50

60

70

80

90

100

D
o

cu
m

en
t

D
ep

th
 P

er
ce

nt
 (%

)

Pressure Testing DeepSeek-Coder-V2 Base 128K Context via "Needle In A HayStack"

1

2

3

4

5

6

7

8

9

10

Sc
o

re

Figure 2 | Evaluation results on the “Needle In A Haystack” (NIAH) tests. DeepSeek-Coder-V2
performs well across all context window lengths up to 128K.

It should be noted here we upsample long context data ratio during long context extension.
As shown in Figure 2, the results on the “Needle In A Haystack” (NIAH) tests indicate that
DeepSeek-Coder-V2 performs well across all context window lengths up to 128K.

3.5. Alignment

3.5.1. Supervised Fine-Tuning

To build DeepSeek-Coder-V2 Chat, we construct the instruction training dataset mixed with
code and math data. We first collect 20k code-related instruction data and 30k math related data
from DeepSeek-Coder and DeepSeek-Math. To maintain the general ability, we also sample
several data from the instruction data of DeepSeek-V2. Finally, we use a instruction dataset
of 300M tokens. For training, we use a cosine schedule with 100 warm-up steps and an initial
learning rate 5𝑒−6. We also use a batch size of 1M tokens and 1B tokens in total.

3.5.2. Reinforcement Learning

We further employ Reinforcement Learning (RL) techniques to fully simulate the capabilities of
DeepSeek-Coder-V2, which is proven to be quite effective.

Prompts Considerable effort was spent collecting prompts related to code and math from
various sources, and each code prompt comes with corresponding test cases. After filtering the
prompts, there are approximately 40k data in total.

Reward Modeling Reward models play crucial roles in the RL training. In terms of mathemat-
ical preference data, we obtain them using the ground-truth labels. In terms of code preference
data, although the code compiler itself can already provide 0-1 feedback (whether the code pass
all test cases or not), some code prompts may have a limited number of test cases, and do not
provide full coverage, and hence directly using 0-1 feedback from the compiler may be noisy
and sub-optimal. Therefore, we still decide to train a reward model on the data provided by the
compiler, and use the reward model to provide signal during RL training, which is more robust

6

and has better generalization ability, in comparison with raw compiler signal. As illustrated in
Figure 3, in our in-house test sets (Leetcode and Leetcode-zh), using a reward model to provide
RL training signal clearly outperforms using raw compiler signal. Hence, we use reward model
signal rather than compiler signal in all subsequent experiments.

Reinforcement Learning Algorithm We employ Group Relative Policy Optimization (GRPO)
Shao et al. (2024) as our RL algorithm, which is the same as what DeepSeek-V2 uses. Notably,
GRPO is proven to be quite effective and has less cost compared with PPO, since there is no
need to maintain an additional critic model.

100 200 300 400 500 600
Steps

0.12

0.14

0.16

0.18

0.20

0.22

Pa
ss

@
1

LeetCode-Pass@1
Compiler Signal
Reward Model Signal
SFT Model

100 200 300 400 500 600
Steps

0.10

0.12

0.14

0.16

Pa
ss

@
1

LeetCode-zh-Pass@1
Compiler Signal
Reward Model Signal
SFT Model

Figure 3 | Performances of Different Methods

4. Experimental Results

In this section, we evaluate DeepSeek-Coder-V2 on three types of tasks, including coding,
mathematics, and general natural language. We compare DeepSeek-Coder-V2 with the previous
state-of-the-art large language models.

• CodeLlama (Roziere et al., 2023) consists of a series of code language models based on
Llama2 (Touvron et al., 2023), and continue pre-training on datasets ranging from 500 to
1000 billion code tokens. These models are available in four sizes: 7B, 13B, 34B, and 70B.

• StarCoder (Lozhkov et al., 2024) is a publicly accessible model with 15 billion parameters.
It is specifically trained on a meticulously curated subset of the Stack dataset (Kocetkov
et al., 2022), covering 86 programming languages.

• StarCoder2 (Lozhkov et al., 2024) consists of 3B, 7B, and 15B parameters models trained
on 3.3 to 4.3 trillion tokens of the Stack2 dataset (Lozhkov et al., 2024), spanning 619
programming languages.

• DeepSeek-Coder (Guo et al., 2024) comprises a series of code language models, ranging
from 1 billion to 33 billion parameters. Each model is trained from scratch on 2 trillion
tokens, with a composition of 87% code and 13% natural language in both English and
Chinese. These models are pre-trained on a project-level code corpus using a window
size of 16K and an additional fill-in-the-blank task, enabling support for project-level code
completion and infilling.

• Codestral (MistralAI, 2024) is a 22B parameter model developed by Mistral. It is trained
on a diverse dataset of over 80 programming languages, including popular ones such as
Python, Java, and JavaScript, as well as more specialized languages like Swift and Fortran.

7

• General language models that we compare include Llama3 70B (Meta, 2024), GPT-4
(OpenAI, 2023), Claude 3 Opus (Anthropic, 2024), and Gemini 1.5 Pro (Reid et al., 2024).
While they are not specifically trained on large code corpora, they achieve state-of-the-art
performance in coding.

4.1. Code Generation

HumanEval and MBPP Benchmarks. The HumanEval (Chen et al., 2021) 4 and MBPP (Austin
et al., 2021b) benchmarks are commonly utilized for assessing the performance of code-generating
Large Language Models (LLMs). HumanEval comprises 164 Python tasks that are verified
through test cases to evaluate the performance of Code LLMs in a zero-shot scenario. For MBPP,
we use the MBPP-Plus version (Liu et al., 2023a) to evaluate the models. To test the multilingual
abilities of models, we extended the HumanEval benchmark problems into seven additional
languages: C++, Java, PHP, TypeScript, C#, Bash, JavaScript, Swift, R, Julia, D, Rust and Racket.
For both benchmarks, we employed a greedy search strategy and recreated the baseline results
using identical scripts and environments to ensure a fair comparison.

#TP #AP Python Java C++ C# TS JS PHP Bash

Closed-Source Models

Gemini-1.5-Pro - - 83.5% 81.0% 78.3% 75.3% 77.4% 80.8% 74.5% 39.9%
Claude-3-Opus - - 84.2% 78.5% 81.4% 74.7% 76.1% 75.8% 78.3% 48.7%
GPT-4-1106 - - 87.8% 82.3% 78.9% 80.4% 81.8% 80.1% 77.6% 55.7%
GPT-4-Turbo-0409 - - 88.2% 81.7% 78.3% 79.1% 79.3% 80.8% 78.9% 55.1%
GPT-4o-0513 - - 91.0% 80.4% 87.0% 82.9% 86.2% 87.6% 79.5% 53.8%

Open-Source Models

Codestral 22B 22B 78.1% 71.5% 71.4% 77.2% 72.3% 73.9% 69.6% 47.5%
DS-Coder-instruct 33B 33B 79.3% 73.4% 68.9% 74.1% 67.9% 73.9% 72.7% 43.0%
Llama3-Instruct 70B 70B 81.1% 67.7% 64.0% 69.6% 69.8% 70.2% 65.8% 36.1%

DS-Coder-V2-Lite-Instruct 16B 2.4B 81.1% 76.6% 75.8% 76.6% 80.5% 77.6% 74.5% 43.0%
DS-Coder-V2-Instruct 236B 21B 90.2% 82.3% 84.8% 82.3% 83.0% 84.5% 79.5% 52.5%

#TP #AP Swift R Julia D Rust Racket MBPP+ Average

Closed-Source Models

Gemini-1.5-Pro - - 66.5% 53.4% 71.7% 55.8% 73.1% 48.4% 74.6% 68.9%
Claude-3-Opus - - 63.9% 55.9% 76.1% 60.3% 71.2% 64.6% 72.0% 70.8%
GPT-4-1106 - - 62.7% 57.8% 69.2% 60.9% 78.8% 64.0% 69.3% 72.5%
GPT-4-Turbo-0409 - - 63.9% 56.5% 69.8% 61.5% 78.8% 63.4% 72.2% 72.3%
GPT-4o-0513 - - 75.9% 65.2% 78.0% 60.9% 80.1% 64.6% 73.5% 76.4%

Open-Source Models

Codestral 22B 22B 63.3% 49.7% 67.9% 32.1% 67.3% 37.3% 68.2% 63.2%
DS-Coder-instruct 33B 33B 61.4% 44.7% 53.5% 31.4% 68.6% 46.0% 70.1% 61.9%
Llama3-Instruct 70B 70B 55.1% 46.0% 62.9% 48.1% 58.3% 46.0% 68.8% 60.6%

DS-Coder-V2-Lite-Instruct 16B 2.4B 64.6% 47.8% 67.3% 45.5% 62.2% 41.6% 68.8% 65.6%
DS-Coder-V2-Instruct 236B 21B 72.2% 64.0% 72.3% 64.1% 78.2% 63.4% 76.2% 75.3%

Table 3 | Performance Metrics for Various Models on HumanEval and MBPP Benchmarks

Table 3 provides an extensive overview of the performance metrics for various models across
multiple programming languages on the HumanEval and MBPP+ Benchmarks. The DeepSeek-
Coder-V2-Instruct demonstrates exceptional performance, securing the second-highest average

4We use the template "Please complete the python function below. The final complete version of your function
must be returned within a code block. Here is the unfinished function:\n ```python\n{problem_description}\n\n"
to build the instruction prompt.

8

score of 75.3%. This performance is notable as it breaks the dominance typically seen from
closed-source models, standing out as a leading open-source contender. It is surpassed only
by GPT-4o, which leads with an average score of 76.4%. DeepSeek-Coder-V2-Instruct shows
top-tier results across a variety of languages, including the highest scores in Java and PHP, and
strong performances in Python, C++, C#, TypeScript, and JavaScript, underscoring its robustness
and versatility in handling diverse coding challenges.

Furthermore, the DeepSeek-Coder-V2-Lite-Instruct also performs impressively, surpassing
the larger 33B model. With a considerable margin in average performance (65.6% vs. 61.9%), it
highlights the effectiveness of the 16B model in delivering competitive results despite its smaller
size. This underscores the model’s efficiency and the advancements in model architecture and
training methodologies that allow it to outperform larger counterparts.

Competitive Programming. To further validate the model’s capability in real-world compet-
itive programming problems, we utilize the LiveCodeBench (Jain et al., 2024) and USACO
benchmark (Shi et al., 2024) to estimate the effectiveness of DeepSeek-Coder-V2. LiveCodeBench
is a meticulous and contamination-free assessment of Large Language Models (LLMs) for code
generation, systematically gathering novel challenges over time from three prominent compet-
itive programming platforms: LeetCode, AtCoder, and CodeForces. Since the cut-off of the
training data is before November 2023, we use the subset (1201-0601) of Livecodebench. USACO
benchmark contains 307 problems from the USA Computing Olympiad, along with high-quality
unit tests, reference code, and official analyses for each problem.

Model #TP #AP LiveCodeBench USACOEasy (82) Medium (87) Hard (57) Overall (226)

Closed-Source Models

Gemini-1.5-Pro - - 74.9% 16.8% 1.8% 34.1% 4.9%
Claude-3-Opus - - 77.2% 16.7% 0.7% 34.6% 7.8%
GPT-4-1106 - - 78.4% 20.2% 3.5% 37.1% 11.1%
GPT-4-Turbo-0409 - - 84.1% 35.4% 6.1% 45.7% 12.3%
GPT-4o-0513 - - 87.4% 27.5% 4.9% 43.4% 18.8%

Open-Source Models

Codestral 22B 22B 66.5% 17.7% 0.2% 31.0% 4.6%
DS-Coder-instruct 33B 33B 51.6% 9.7% 0.4% 22.5% 4.2%
Llama3-Instruct 70B 70B 62.4% 14.4% 2.1% 28.7% 3.3%

DS-Coder-V2-Lite-Instruct 16B 2.4B 58.5% 8.0% 0.0% 24.3% 6.5%
DS-Coder-V2-Instruct 236B 21B 84.1% 29.9% 5.3% 43.4% 12.1%

Table 4 | Performance on the LiveCodeBench (LCB) and USACO benchmarks.

Table 4 showcases the performance of various language models on the two benchmarks.
Notably, DeepSeek-Coder-V2-Instruct delivers a standout performance, tying for the highest
score among large models at 43.4%, on par with GPT-4o. This exceptional result places it
second overall, just behind GPT-4-Turbo-0409, which leads with an overall performance of
45.7%. DeepSeek-Coder-V2-Instruct’s impressive ability to handle complex coding challenges
firmly establishes it as a top contender, closely trailing the leading GPT-4-Turbo variant.

9

4.2. Code Completion

4.2.1. Repository-Level Code Completion Evaluation

We use RepoBench (Liu et al., 2023b) to evaluate the capabilities of currently available open-
source code models with sizes below 35B in repository-level code completion tasks. This dataset
is constructed from a diverse set of real-world, open-sourced, permissively licensed repositories
in two popular programming languages: Python and Java. Notably, the latest version (v1.1)
of RepoBench sources its data from GitHub repositories created between October 6th and
December 31st, 2023, while our pre-training data includes code created before November 2023.
To ensure this dataset was not present in our pre-training data and avoid data leakage, we only
use data from December 2023.

Our evaluation includes five context length levels—2k, 4k, 8k, 12k, and 16k tokens—across
three settings: cross-file-first, cross-file-random, and in-file. We use greedy search for all models
under evaluation. The models were constrained to generate a maximum of 64 new tokens
per prompt, and the first non-empty and non-comment line of the output was selected as the
prediction. The maximum token length for prompts was set to 15,800 by truncating excess
cross-file context. We report the average exact match for the different context length levels.

Model #TP #AP Python Java

2k 4k 8k 12k 16k Avg 2k 4k 8k 12k 16k Avg

StarCoder2-Base 15B 15B 35.7% 36.7% 34.6% 27.4% 25.1% 32.1% 46.2% 45.0% 39.8% 30.5% 30.7% 38.7%
CodeLlama-Base 7B 7B 32.0% 34.4% 35.3% 33.3% 32.2% 33.5% 43.1% 42.1% 40.4% 37.0% 40.3% 40.6%
CodeLlama-Base 13B 13B 33.0% 36.5% 37.0% 34.6% 35.0% 35.2% 43.5% 44.8% 40.7% 38.6% 41.1% 41.8%
CodeLlama-Base 34B 34B 35.3% 37.5% 39.5% 34.9% 35.6% 36.6% 45.9% 45.4% 42.5% 41.0% 41.2% 43.3%
DS-Coder-Base 6.7B 6.7B 36.1% 37.5% 38.2% 34.0% 35.0% 36.2% 46.8% 46.4% 42.9% 38.8% 40.8% 43.3%
DS-Coder-Base 33B 33B 39.7% 40.1% 40.0% 36.9% 38.5% 39.1% 47.9% 47.7% 43.3% 40.9% 43.6% 44.8%
Codestral 22B 22B 42.1% 44.3% 46.6% 46.6% 51.5% 46.1% 48.3% 47.8% 46.0% 42.2% 43.9% 45.7%

DS-Coder-V2-Lite-Base 16B 2.4B 38.3% 38.6% 40.6% 38.3% 38.7% 38.9% 48.8% 45.7% 42.4% 38.1% 41.1% 43.3%

Table 5 | Performance of different models on December subset of RepoBench v1.1.

As shown in Table 5, the results indicate that the DeepSeek-Coder-V2-Lite-Base model,
despite having only 2.4 billion active parameters, achieves code completion capabilities in
Python comparable to the DeepSeek-Coder-Base 33B model and in Java comparable to the
DeepSeek-Coder-Base 7B model. Compared to CodeStral, the DeepSeek-Coder-V2-Lite-Base
model has only one-tenth of the active parameters of CodeStral, resulting in lower performance
in code completion tasks. However, we believe that the smaller number of active parameters in
DeepSeek-Coder-V2 makes it faster for code completion scenarios.

4.2.2. Fill-in-the-Middle Code Completion

DeepSeek-Coder-V2-Lite is trained with a unique approach that includes a 0.5 Fill-In-the-Middle
(FIM) rate during their pre-training phase. This method allows the model to adeptly complete
code by filling in blanks using the surrounding context, which includes both the preceding and
following code segments. This ability is particularly advantageous for code completion tools.
Several open-source models, such as SantaCoder (Allal et al., 2023), StarCoder (Li et al., 2023b),
and CodeLlama (Roziere et al., 2023), also leverage similar capabilities and have established
high standards in the domain of code generation and completion.

To evaluate the performance of DeepSeek-Coder-V2 models, we conducted a comparative
analysis against leading models. The assessment was based on the Single-Line Infilling bench-
marks, covering three different programming languages as described by Allal et al. (2023). The

10

main metric for this evaluation was the line exact match accuracy5.

Model #TP #AP python java javascript Mean

StarCoder6 16B 16B 71.5% 82.3% 83.0% 80.2%
CodeLlama-Base 7B 7B 58.6% 70.6% 70.7% 68.0%
CodeLlama-Base 13B 13B 60.7% 74.3% 78.5% 73.1%

DS-Coder-Base 1B 1B 74.1% 85.1% 82.9% 81.8%
DS-Coder-Base 7B 7B 79.8% 89.6% 86.3% 86.1%
DS-Coder-Base 33B 33B 80.5% 88.4% 86.6% 86.4%
Codestral 22B 22B 77.2% 83.2% 85.9% 83.0%

DS-Coder-V2-Lite-Base 16B 2.4B 80.0% 89.1% 87.2% 86.4%

Table 6 | Performance of different approaches on the FIM-Tasks.

The table presents the performance of various coding models on FIM (Fill-in-the-Middle)
tasks across three programming languages: Python, Java, and JavaScript, with a Mean score
indicating overall effectiveness. Among the compared models, DeepSeek-Coder-V2-Lite-Base,
with a configuration of 2.4B active parameters, achieves outstanding results. It scores 80.0%
in Python, 89.1% in Java, and 87.2% in JavaScript, leading to a top Mean score of 86.4%. This
demonstrates the superior effectiveness of DeepSeek-Coder-V2-Lite-Base, particularly in han-
dling FIM tasks across different programming languages, achieving comparable performance
with other bigger models in the evaluation.

4.3. Code Fixing

To evaluate the bug-fixing capabilities of the model, we used the Defects4J 7, SWE-bench
(Jimenez et al., 2023), and Aider 8 datasets for testing. Defects4J is a widely used dataset in the
field of software engineering, specifically designed for the purpose of evaluating and testing
program repair techniques. It consists of a collection of real-world software bugs from various
open-source projects, including but not limited to Apache Commons, JFreeChart, and Closure
Compiler. Each bug in the dataset is accompanied by test suites that can be used to validate
the effectiveness of program repair tools. Since the original bugs in Defec4J may need modify
several files in the repository resulting in a long context, we collect 238 bugs that only need to
modify one method from this benchmark.

SWE-bench is a comprehensive benchmark designed to evaluate the performance of large
language models in addressing real-world software issues sourced from GitHub. The benchmark
presents a codebase alongside a specific issue, challenging the language model to generate a
patch that effectively resolves the described problem. This rigorous evaluation framework
ensures that the language model’s ability to understand and fix real-world software issues is
thoroughly tested, providing a clear measure of its practical utility and effectiveness in software
development tasks. We evaluate on the lite version provided by the official SWE-Bench 9, this
test set contains 300 issues, it’s more efficient and more widely used. We utilize the CodeACT
agent v1.3 framework from OpenDevin10 and improve the action extraction part. The decoding

5We use the first generated line rather than the whole generated chunk, thus the result is slightly different with
DeepSeek-Coder.

7https://github.com/rjust/defects4j
8https://github.com/paul-gauthier/aider
9https://www.swebench.com/lite.html

10https://github.com/OpenDevin/OpenDevin

11

parameters are set to 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.5 and 𝑡𝑜𝑝𝑝 = 0.95. The results for the GPT series are sourced
from OpenDevin, while the results for Claude-3-Opus come from SWE-Agent. Additionally, we
provide the evaluation results for Gemini-1.5-Pro and Codestral using the same script as our
tests. However, we do not evaluate Llama3-Instruct on SWE-Bench Lite as it only supports an
8K context length.

Aider’s code editing benchmark evaluates the LLM’s ability to modify Python source files,
completing 133 distinct coding tasks. This benchmark not only tests the LLM’s coding skills but
also checks its consistency in producing code edits according to the specifications in the prompt.
For DeepSeek-Coder-V2 models, we use whole format to evaluate.

Model #TP #AP Defects4J SWE-Bench Lite Aider

Closed-Source Models

Gemini-1.5-Pro - - 18.6% 19.3% 57.1%
Claude-3-Opus - - 25.5% 11.7% 68.4%
GPT-4-1106 - - 22.8% 22.7% 65.4%
GPT-4-Turbo-0409 - - 24.3% 18.3% 63.9%
GPT-4o-0513 - - 26.1% 26.7% 72.9%

Open-Source Models

Codestral 22B 22B 17.8% 2.7% 51.1%
DS-Coder-Instruct 33B 33B 11.3% 0.0% 54.5%
Llama3-Instruct 70B 70B 16.2% - 49.2%

DS-Coder-V2-Lite-Instruct 16B 2.4B 9.2% 0.0% 44.4%
DS-Coder-V2-Instruct 236B 21B 21.0% 12.7% 73.7%

Table 7 | Performances of different models on repair benchmarks.

Table 7 outlines the performances of different language models on software repair bench-
marks, including Defects4J, SWE-Bench Lite, and Aider. Among open-source models, DeepSeek-
Coder-Instruct emerges as a standout, achieving the best performance within the open source
models. It scores 21% in Defects4J and 12.7% in SWE-Bench Lite, closely approaching the results
of leading closed-source models and demonstrating significant capability in handling longer
code sequences. Notably, DeepSeek-Coder-V2-Instruct achieves the highest score of 73.7% in
Aider, surpassing all other models listed, including closed-source counterparts. This superior
performance highlights its efficiency and robustness in automated code repair tasks, positioning
DeepSeek-Coder-V2-Instruct as the top open-source model and a formidable competitor to
closed-source alternatives in the field.

4.4. Code Understanding and Reasoning

To assess the code reasoning capabilities of our models, we utilize the CRUXEval benchmark.
This benchmark comprises 800 Python functions paired with corresponding input-output
examples. It is divided into two distinct tasks: CRUXEval-I, which requires the large language
model (LLM) to predict the output based on the given input, and CRUXEval-O, where the model
must predict the input from the known output. This structure challenges the model’s ability
to understand and reason through Python code in both forward and reverse directions. Table
8 presents the performance of various language models on the CruxEval benchmark, which
assesses models on two metrics: CruxEval-I-COT and CruxEval-O-COT. Among the open-source
models, DeepSeek-Coder-V2-Instruct stands out significantly. It scores 70.0% on CruxEval-I-

12

Model #TP #AP CruxEval-I-COT CruxEval-O-COT

Closed-Source Models

Gemini-1.5-Pro - - 67.0% 77.5%
Claude-3-Opus - - 73.4% 82.0%
GPT-4-1106 - - 75.5% 77.1%
GPT-4-Turbo-0409 - - 75.7% 82.0%
GPT-4o-0513 - - 77.4% 88.7%

Open-Source Models

Codestral 22B 22B 48.0% 60.6%
DS-Coder-Instruct 33B 33B 47.3% 50.6%
Llama3-Instruct 70B 70B 61.1% 64.3%

DS-Coder-V2-Lite-Instruct 16B 2.4B 53.0% 52.9%
DS-Coder-V2-Instruct 236B 21B 70.0% 75.1%

Table 8 | Performance of different models on the CruxEval benchmark.

COT and 75.1% on CruxEval-O-COT, showcasing its superior capability within the open-source
domain. However, when compared to larger closed-source models, there is a performance gap.
This performance gap may largely be attributed to the fact that DeepSeek-Coder-V2-Instruct
operates with only 21 billion activation parameters, which is considerably fewer than those in
larger, more advanced closed-source models like GPT-4o. This limitation in model complexity
could restrict its learning and problem-solving capacities.

4.5. Mathematical Reasoning

To assess the mathematical reasoning capabilities of DeepSeekCoder-V2, we utilized the popular
grade-school benchmark GSM8K (Cobbe et al., 2021), along with advanced competition-level
benchmarks including MATH (Hendrycks et al., 2021), the American Invitational Mathematics
Examination (AIME) 2024 (MAA, 2024), and Math Odyssey (Netmind.AI, 2024)11.

Model #TP #AP GSM8K MATH AIME 2024 Math Odyssey

Closed-Source Models

Gemini 1.5 Pro - - 90.8% 67.7% 2/30 45.0%
Claude-3-Opus - - 95.0% 60.1% 2/30 40.6%
GPT-4-1106 - - 91.4% 64.3% 1/30 49.1%
GPT-4-Turbo-0409 - - 93.7% 73.4% 3/30 46.8%
GPT-4o-0513 - - 95.8% 76.6% 2/30 53.2%

Open-Source Models

Llama3-Instruct 70B 70B 93.0% 50.4% 1/30 27.9%
DS-Coder-V2-Lite-Instruct 16B 2.4B 86.4% 61.8% 0/30 44.4%
DS-Coder-V2-Instruct 236B 21B 94.9% 75.7% 4/30 53.7%

Table 9 | Performance of different models on the mathematical reasoning.
DeepSeek-Coder-V2-Instruct can achieve 5/30 on AIME 2024 with maj@64.

11The performance of DeepSeek-Coder-V2 on the four mathematical benchmarks was obtained with zero-shot
chain-of-thought prompting; each test question was concatenated with the instruction: "\nPlease reason step by step,
and put your final answer within \boxed{}."

13

The results, presented in Table 9, were obtained using greedy decoding without the aid
of tools or voting techniques, unless otherwise specified. DeepSeek-Coder-V2 achieved an
accuracy of 75.7% on the MATH benchmark and 53.7% on Math Odyssey, comparable to the
state-of-the-art GPT-4o. Additionally, DeepSeek-Coder-V2 solves more problems from AIME
2024 than the other models, demonstrating its strong mathematical reasoning capabilities.

4.6. General Natural Language

As DeepSeek-Coder-V2 is built upon DeepSeek-V2, it inherits the strong natural language capa-
bility, even surpassing DeepSeek-V2 on reasoning-related benchmarks. We compare DeepSeek-
Coder-V2 Instruct with DeepSeek-V2 Chat on standard benchmarks, which covers both En-
glish and Chinese benchmarks, including BigBench Hard (BBH) (Suzgun et al., 2022), MMLU
(Hendrycks et al., 2020), ARC (Clark et al., 2018), TriviaQA (Joshi et al., 2017), NaturalQuestions
(Kwiatkowski et al., 2019), AGIEval (Zhong et al., 2023)，CLUEWSC (Xu et al., 2020), C-Eval
(Huang et al., 2023), and CMMLU (Li et al., 2023a). Besides, we also evaluate the open-ended
generation ability of models, including Arena-Hard (Li et al., 2024), AlpacaEval2.0 (Dubois et al.,
2024), MT-Bench (Zheng et al., 2023), and Alignbench (Liu et al., 2023c). The evaluation pipeline
and metrics are the same as in DeepSeek-V2, where the MMLU are evaluated using OpenAI
simple-eval package https://github.com/openai/simple-evals.

Benchmark (Metric) # Shots DeepSeek-V2-Lite DeepSeek-Coder-V2-Lite DeepSeek-V2 DeepSeek-Coder-V2
Chat Instruct Chat Instruct

Active Params - 2.4B 2.4B 21B 21B
Total Params - 16B 16B 236B 236B
Training Tokens - 5.7T 10.2T 8.1T 10.2T

English

BBH (EM) 3-shot 48.1 61.2 79.7 83.9
MMLU (Acc.) 5-shot 55.7 60.1 78.1 79.2
ARC-Easy (Acc.) 25-shot 86.1 88.9 98.1 97.4
ARC-Challenge (Acc.) 25-shot 73.4 77.4 92.3 92.8
TriviaQA (EM) 5-shot 65.2 59.5 86.7 82.3
NaturalQuestions (EM) 5-shot 35.5 30.8 53.4 47.5
AGIEval (Acc.) 0-shot 42.8 28.7 61.4 60.0

Chinese
CLUEWSC (EM) 5-shot 80.0 76.5 89.9 85.9
C-Eval (Acc.) 5-shot 60.1 61.6 78.0 79.4
CMMLU (Acc.) 5-shot 62.5 62.7 81.6 80.9

Open-ended

Arena-Hard - 11.40 38.10 41.60 65.00
AlpacaEval 2.0 - 16.85 17.74 38.90 36.92
MT-Bench - 7.37 7.81 8.97 8.77
Alignbench - 6.02 6.83 7.91 7.84

Table 10 | A Comparison of DeepSeek-Coder-V2 Instruct with DeepSeek-V2 Chat.

When comparing the performance of 16B models, it is evident that DeepSeek-Coder-V2-
Lite-Instruct outperforms DeepSeek-V2-Lite-Chat in benchmarks like BBH and Arena-Hard.
These benchmarks place a high demand on the model’s reasoning ability, which DeepSeek-
Coder-V2-Lite-Instruct excels at. However, DeepSeek-Coder-V2-Lite Instruct falls behind in
knowledge-intensive benchmarks like TriviaQA, primarily due to the relatively smaller amount
of web data used during pre-training.

Moving on to 236B models, DeepSeek-Coder-V2 Instruct exhibits greater strength in rea-
soning benchmarks, particularly in Arena-Hard, which comprises a substantial proportion of
code, math, and reasoning questions. On the other hand, DeepSeek-V2 Chat demonstrates
slightly better results in benchmarks such as MT-bench (Zheng et al., 2023), AlpacaEval 2.0
(Dubois et al., 2024), and AlignBench (Liu et al., 2023c). This advantage can be attributed to the
general-purpose alignment stage of DeepSeek-V2 Chat.

14

https://github.com/openai/simple-evals

5. Conclusion

In this paper, we introduce DeepSeek-Coder-V2 to further advance the field of code intelligence,
which is continually pre-trained from DeepSeek-V2 with 6 trillion tokens sourced from a high-
quality and multi-source corpus. Through this continued pre-training, we find that DeepSeek-
Coder-V2 significantly enhances the model’s capabilities in coding and mathematical reasoning
while maintaining comparable general language performance to DeepSeek-V2. Compared to
DeepSeek-Coder, DeepSeek-Coder-V2 supports a significantly larger number of programming
languages, increasing from 86 to 338, and extends the maximum context length from 16K to
128K tokens. Experimental results demonstrate that DeepSeek-Coder-V2 achieves performance
comparable to state-of-the-art closed-source models such as GPT-4 Turbo, Claude 3 Opus, and
Gemini 1.5 Pro in code and math-specific tasks.

Although DeepSeek-Coder-V2 achieves impressive performance on standard benchmarks,
we find that there is still a significant gap in instruction-following capabilities compared to
current state-of-the-art models like GPT-4 Turbo. This gap leads to poor performance in complex
scenarios and tasks such as those in SWEbench. Therefore, we believe that a code model needs
not only strong coding abilities but also exceptional instruction-following capabilities to handle
real-world complex programming scenarios. In the future, we will focus more on improving the
model’s instruction-following capabilities to better handle real-world complex programming
scenarios and enhance the productivity of the development process.

References

L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis, N. Muennighoff, M. Mishra,
A. Gu, M. Dey, et al. Santacoder: don’t reach for the stars! arXiv preprint arXiv:2301.03988,
2023.

A. Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, and C. Sutton. Program synthesis with large language models, 2021a.

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021b.

M. Bavarian, H. Jun, N. Tezak, J. Schulman, C. McLeavey, J. Tworek, and M. Chen. Efficient
training of language models to fill in the middle. arXiv preprint arXiv:2207.14255, 2022.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you
have solved question answering? try arc, the AI2 reasoning challenge. CoRR, abs/1803.05457,
2018. URL http://arxiv.org/abs/1803.05457.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

15

http://arxiv.org/abs/1803.05457

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Y. Dubois, B. Galambosi, P. Liang, and T. B. Hashimoto. Length-controlled alpacaeval: A simple
way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. Li, et al. Deepseek-
coder: When the large language model meets programming–the rise of code intelligence.
arXiv preprint arXiv:2401.14196, 2024.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Mea-
suring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

Y. Huang, Y. Bai, Z. Zhu, J. Zhang, J. Zhang, T. Su, J. Liu, C. Lv, Y. Zhang, J. Lei, et al. C-Eval: A
multi-level multi-discipline chinese evaluation suite for foundation models. arXiv preprint
arXiv:2305.08322, 2023.

N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, and I. Stoica.
Livecodebench: Holistic and contamination free evaluation of large language models for code,
2024.

C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench: Can
language models resolve real-world github issues? arXiv preprint arXiv:2310.06770, 2023.

M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A large scale distantly supervised chal-
lenge dataset for reading comprehension. In R. Barzilay and M.-Y. Kan, editors, Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1601–1611, Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147.

A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov. Fasttext. zip: Compress-
ing text classification models. arXiv preprint arXiv:1612.03651, 2016.

D. Kocetkov, R. Li, L. Jia, C. Mou, Y. Jernite, M. Mitchell, C. M. Ferrandis, S. Hughes, T. Wolf,
D. Bahdanau, et al. The stack: 3 tb of permissively licensed source code. Transactions on
Machine Learning Research, 2022.

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. P. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M. Chang, A. M. Dai,
J. Uszkoreit, Q. Le, and S. Petrov. Natural questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276.
URL https://doi.org/10.1162/tacl_a_00276.

H. Li, Y. Zhang, F. Koto, Y. Yang, H. Zhao, Y. Gong, N. Duan, and T. Baldwin. CMMLU: Measur-
ing massive multitask language understanding in Chinese. arXiv preprint arXiv:2306.09212,
2023a.

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim,
et al. Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161, 2023b.

16

https://aclanthology.org/P17-1147
https://doi.org/10.1162/tacl_a_00276

T. Li, W.-L. Chiang, E. Frick, L. Dunlap, B. Zhu, J. E. Gonzalez, and I. Stoica. From live data to
high-quality benchmarks: The arena-hard pipeline, April 2024. URL https://lmsys.org/
blog/2024-04-19-arena-hard/.

J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is your code generated by chatGPT really correct? rigor-
ous evaluation of large language models for code generation. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023a. URL https://openreview.net/for
um?id=1qvx610Cu7.

T. Liu, C. Xu, and J. McAuley. Repobench: Benchmarking repository-level code auto-completion
systems. In The Twelfth International Conference on Learning Representations, 2023b.

X. Liu, X. Lei, S. Wang, Y. Huang, Z. Feng, B. Wen, J. Cheng, P. Ke, Y. Xu, W. L. Tam, X. Zhang,
L. Sun, H. Wang, J. Zhang, M. Huang, Y. Dong, and J. Tang. Alignbench: Benchmarking
chinese alignment of large language models. CoRR, abs/2311.18743, 2023c. doi: 10.48550/A
RXIV.2311.18743. URL https://doi.org/10.48550/arXiv.2311.18743.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, D. Pykhtar,
J. Liu, Y. Wei, et al. Starcoder 2 and the stack v2: The next generation. arXiv preprint
arXiv:2402.19173, 2024.

MAA. American invitational mathematics examination - aime. American Invitational
Mathematics Examination - AIME 2024, 2024. URL https://maa.org/math-competi
tions/american-invitational-mathematics-examination-aime.

Meta. Introducing meta llama 3: The most capable openly available llm to date. https:
//ai.meta.com/blog/meta-llama-3/, April 2024.

MistralAI. Codestral. https://mistral.ai/news/codestral/, 2024. Accessed: 2024-05-29.

Netmind.AI. Odyssey-math. https://github.com/protagolabs/odyssey-math/tree
/main, 2024. Accessed: April 22, 2024.

OpenAI. Gpt-4 technical report, 2023.

B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Yarn: Efficient context window extension of large
language models. arXiv preprint arXiv:2309.00071, 2023.

M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b. Alayrac, R. Soricut, A. Lazari-
dou, O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin,
et al. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, M. Zhang, Y. Li, Y. Wu, and D. Guo. Deepseekmath:
Pushing the limits of mathematical reasoning in open language models. arXiv preprint
arXiv:2402.03300, 2024.

Q. Shi, M. Tang, K. Narasimhan, and S. Yao. Can language models solve olympiad programming?
arXiv preprint arXiv:2404.10952, 2024.

17

https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://doi.org/10.48550/arXiv.2311.18743
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://mistral.ai/news/codestral/
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main

M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le,
E. H. Chi, D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve
them. arXiv preprint arXiv:2210.09261, 2022.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

L. Xu, H. Hu, X. Zhang, L. Li, C. Cao, Y. Li, Y. Xu, K. Sun, D. Yu, C. Yu, Y. Tian, Q. Dong, W. Liu,
B. Shi, Y. Cui, J. Li, J. Zeng, R. Wang, W. Xie, Y. Li, Y. Patterson, Z. Tian, Y. Zhang, H. Zhou,
S. Liu, Z. Zhao, Q. Zhao, C. Yue, X. Zhang, Z. Yang, K. Richardson, and Z. Lan. CLUE: A chi-
nese language understanding evaluation benchmark. In D. Scott, N. Bel, and C. Zong, editors,
Proceedings of the 28th International Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13, 2020, pages 4762–4772. International Com-
mittee on Computational Linguistics, 2020. doi: 10.18653/V1/2020.COLING-MAIN.419. URL
https://doi.org/10.18653/v1/2020.coling-main.419.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,
H. Zhang, J. E. Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-bench and chatbot
arena, 2023.

W. Zhong, R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen, and N. Duan. AGIEval: A
human-centric benchmark for evaluating foundation models. CoRR, abs/2304.06364, 2023.
doi: 10.48550/arXiv.2304.06364. URL https://doi.org/10.48550/arXiv.2304.06364.

18

https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.48550/arXiv.2304.06364

A. Supported Programming Languages

ABAP, ActionScript, Ada, Agda, AGS Script, Alloy, AmbientTalk, AMD GPU, AMPL, ANSYS
Parametric Design Language, ANTLR, Apache Configuration, APL, AppleScript, Arc, Arduino,
ASP, AspectJ, Assembly, Asymptote, Augeas, AutoHotkey, AutoIt, AWK, BC, Berry, BitBake,
BlitzBasic, BlitzMax, Bluespec, BNF, Boo, Boogie, Brainfuck, BrightScript, Bro, BST, C, C#,
C2HS Haskell, CADL, CapDL, Ceylon, Chapel, ChucK, Cirru, Click, Clojure, CMake, COBOL,
COBOLFree, CoffeeScript, ColdFusion CFC, Common Lisp, C++, Crystal, Csound, Csound Score,
CSS, CUDA, Cypher, Cython, Darcs Patch, Dart, DASM16, Debian Control File, DeviceTree, Diff,
DM, Docker, Dockerfile, Dylan, EBNF, eC, Eiffel, Elixir, Elm, ELPi, Emacs Lisp, EmberScript,
Erlang, Execline, F#, Factor, Fancy, Fantom, Felix, Fennel, Fish, Flux, Fortran, Fortran Fixed Form,
FoxPro, FreeFem, FreeMarker, F*, Futhark, G-Code, GAP, GAS, GDScript, Genshi, Gentoo Ebuild,
Gentoo Eclass, Gettext Catalog, GLSL, Glyph, Gnuplot, Go, Gosu, Grace, Gradle, Grammatical
Framework, GraphQL, Graphviz DOT, Groff, Groovy, Groovy Server Pages, GSQL, Handlebars,
Haskell, Haxe, HCL, HLSL, HTML, HTML Django, HTML ERB, HTML PHP, HTTP, Hy, Idris,
IGOR Pro, Inform 6 Template, Inno Setup, Io, Isabelle, J, Jade, JAGS, Jasmin, Java, Java Server
Pages, JavaScript, JavaScript MozPreproc, JCL, JFlex, JSON, JSONiq, JSX, Julia, Jupyter Notebook,
K, Kconfig, Koka, Kotlin, KRL, Lean, Less, Lex, LFE, Lighttpd Configuration File, LilyPond,
Limbo, Linker Script, Liquid, Literate Agda, Literate CoffeeScript, LLVM, Logtalk, LSL, Lua, M4,
Makefile, Mako, Mason, MATLAB, Maxima, Meson, Metal, MiniScript, Mirah, Mizar, Modelica,
Modula-2, Monkey, MooCode, MoonScript, Mosel, MQL, MUF, MuPAD, NASM, NCL, NetLinx,
Nginx Configuration File, Nimrod, Ninja, Nit, Nix, NSIS, Nu, NuSMV, Objdump, Objective-C,
Objective-C++, OCaml, Octave, Odin, OMG Interface Definition Language, ooc, Opa, OpenCL,
OpenEdge ABL, OpenSCAD, Ox, Oz, Papyrus, Parrot Internal Representation, Pascal, PAWN,
PEG, Perl, Perl 6, PHP, Pike, PkgConfig, POD, Pony, POV-Ray, PowerShell, Praat, Processing,
Propeller Spin, Protocol Buffer, Pug, Puppet, PureBasic, PureScript, Python, Q, QML, QVTO, R,
Racket, Ragel in Ruby Host, RAML, RConsole, Rd, REALbasic, ReasonML, Red, RenderScript,
Ren’Py, REXX, RHTML, Ride, Robot Framework, Rouge, Ruby, Rust, S, Sage, SARL, SAS, Sass,
Scala, Scheme, Scilab, SCSS, Self, Shell, ShExC, Sieve, Silver, Singularity, Slim, Smali, Smarty,
Smithy, SMT, Solidity, SourcePawn, SPARQL, SQF, SQL, Squirrel, Stan, Standard ML, Stata,
Stylus, SuperCollider, Swift, SWIG, SystemVerilog, Tcl, Tcsh, Tea, Terminfo, TeX, Thrift, Transact-
SQL, Treetop, Turing, Twig, TypeScript, TypoScript, Unity3D Asset, Uno, UnrealScript, UrWeb,
USD, Vala, VBScript, VCL, Velocity, Verilog, VHDL, VimL, Visual Basic, Vue, WebAssembly,
Web IDL, Whiley, X10, XBase, XC, XML, XML Lasso, XQuery, XS, XSLT, Xtend, Xtlang, YANG,
Zeek, Zephir, Zig, Zimpl

19

	Introduction
	Contributions
	Summary of Evaluations and Metrics

	Data Collection
	Training Policy
	Training Strategy
	Model Architecture
	Training Hyper-Parameters
	Long Context Extension
	Alignment
	Supervised Fine-Tuning
	Reinforcement Learning

	Experimental Results
	Code Generation
	Code Completion
	Repository-Level Code Completion Evaluation
	Fill-in-the-Middle Code Completion

	Code Fixing
	Code Understanding and Reasoning
	Mathematical Reasoning
	General Natural Language

	Conclusion
	Supported Programming Languages

